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1. Introduction. 4parent ly  the GreenSt. Venant and the Ahnaasi-Hamel 

s t r a in  tensors were first  expressed in Curvilinear coordinates in terms of 

displacements as 
-4 

/’ 
1 
2 (’AIB +- % / A  + “CIA ucIJ3) 

and 86 / /” 

by Green and &ma [l]. 

been enunciated much ear l ier ,  t he i r  extension t o  curvilinear reference frames 

has been found t o  be fraught with difficult ies.  

Although the Cartesian counterparts of--(l) and (2)  haa 
-- - 

Since it is w e l l  known that a 

satisfactory solution t o  many problems i n  continuum mechanics can be achieved 

only through the use of curvilinear coordinates, these d i f f icu l t ies  must be 

surmounted. 
- _  - _  

Forms (1) and ( 2 )  were later repeated i n  a text by Green and Zerna 121, 

and were rederived by Doyle and Ericksen [ 31 They have also played an expl ic i t  

role i n  the works of Green and Adkins [4], Eringen [ 5 ] ;  and others. 

these 

dinate  system used t o  describe the, undeformed configuration. 

the deformation is  represented by 8, or  UA. This same deformation may be 

measured with reference t o  a coordinate system chosen t o  describe the deformed 

In a l l  of 
\ *  

Em represen-bs *&e z a s c r e  of s t ra in  tensor written i n  terns- of a coor- 

In  th i s  system 
P 
i 

i n  terms of E and the displacement 
id body, i n  which case the s t ra in  is reco 

\ 
is represented by reference sys$ems has been related 

t o  the covariant derivatives UAIB or  uiIJ as shown. 
9 
‘i ‘\ 

I 
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.. It is the purpose of this paper t o  show (i) th@t the w e  of covariant deriv- 
I 

atives of the displacement is incorrect, and (U) &at the correct form of (1) 

and (2) involves only ordinary par t i a l  derivatives of the displacements. 

A l l  of the above authors define 3' 
2. Nontensor Character of U and ui 

A IB 

'AIB j as 

= u  
'A IB A, B 

and 

(3 1 
C - uc 

i n  which the camma denotes partial differentiation with resp_ec_t_to the coordinates 

whose indices follow, and where ri and i& denote Christoffel symbols of the 

second kind. Meaningless though it m a ~ r  be, the formal operations appearing on 

? 

j k  

the right-hand side of (3) and (4) can be applied t o  nontensors as w e l l  as t o  

tensors. However,  when these operations are applied t o  a tensor ti (or TA), 

the theory guarantees tha t  t (or TAIB) is likewise a tensor. .. When they are i I? 
applied t o  a nontensor, the theory does not supply such a guarantee. - 

The cornerstone of the present ana3ysis is  the observation that b g e  a s -  

placements are not tensors and hence tha t  UAiB and ui I are = tensors. Consider, - 
for  example, a displacement u2 i n  a circular cylindrical coordinate system x i , as 

- 1 -. - _  
1 

shown i n  Fig. 1, where za is taken as a Cartesian frame. If ui and ua are 

i 
8 tensors, then 

ua = xa ui 

' .  should hold, where 

e 

According t o  Fig. 1, i n  which x3 and z3 are perpendicular t o  the plane or  
\ 

the page; 
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and the dispJ.a,cements in the two systems are related accomling to 

u1 = xl[cos(x2 + u2) - cos $1 + u1 cos(# + u2) 

~2 = xl[sin(S + u2) - sin 93 + u1 sin(* + u2) 

u3 = u39 

wherein Ua refers to the Cartesian frame and ui refers to the circular 

cylindrical frame. 

x i  are determined f'rom (7), we find that (5) beccms 

carrying out the sumations implied in (5), in which th 

---_-5 

1 -- u1 = u1 cos x2 - (U2/x1)sin x2 

1 1 ,  

u2 = u1 sin x2 + (U2/xl)cos x2 

u3 = us 0 

When (a2)" << 1 equation (8) becomes .. 
I u1 = -Xh2 sin XI + u1 cos x2 

u2 = X W  cos x2 + u1 sin x2 
** 

U 3 = O ,  J 
which mfur be seen to agree with ( 9 )  when we jecall that -- - 

1 -  

u2 = (x1)2u2 

? 

Thus it is evident in the exanple that (5) holds only in the limiting case of 

irzi~ites- displacements. 

magnitude is unrestricted, and thus the presumption that 

Conversely, UA and ui are not tensors when their 

UAIB and ui i3 possess 

1 - the tensor character impliqd by their indices is unjustified. 

general terms, (1) and (2) are 

tesimal, or (ii) when the displacement is radial as measured in eiwer a 

or circular cylindrical coordinate system. 

Stated in more 

only when (i) the disphcements are mini- . 
herica /i 

/ 

i 
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If UA and ui were tensors, reg&rdless of t he i r  magnitudes, it yould 

then be carrect t o  write that 

and 

Since neither UA nor ui is a tensor, however, neither (ll) nor (12) is 

correct. Continuing with the use of circular cylindrical cw-ginates, for 

example, the left-hand side of (1.2) yields 
w 

_ _  
but the right-hand side is such that 

Should the displacement be only radial, then u2 3 0 and the right-hand side6 

of (13) and (14) agree. This is indicative of the behavior of other components 

of (ll) and (12). Since direct  calculation shows that (11) and (12) f a i l  t o  

Y hold, it is again e-nt that the quantities UAIB and u i l j  do not have 
R 

general tensor character, q conclusion established by the earlier failure of 

3. Derivation of Strain-Displacement Relations. It w i l l  prove co i: nient - -  

( 5 ) .  

/ 

t o  consider six coordinate systems, three for  the i n i t i a l  configuration of the 

body and three fo r  the deformed configuration. 

the material points are assigned coordinates Z" relatF t o  a Cartesian 

frame and coordinates 8 relative t o  an orthogersd curvilinear frame at 

time to. 

In the i n i t i a  configuration 
* /' /J 

/ .-. 

i- , 

I _  AS the deformation p r o k r e s s w s e  zU and IP coordinates of a 

material point will change accordingly. Points i n  the deformed body are -signed 

I 

.. 
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! i 
coordinates zi relative t o  a second Cartesian system and coordinates x 

relative t o  a second orthogonal curvilinear frame, a t  time t, t f to. For 

ease of discussion we shall require that the origins of these four systems l i e  

within the material body, although th is  is not essential. Having chosen the 

four reference frames, we now mark those points of the body which l i e  along 

the axes i n  the i n i t i a l  and deformed body. 

i n  the deformed body of those points lying along the 

Z" and zi N e x t  we find the images 

Z', Z2, and Z3 axes 

i n  the original body and label  these image l ines  

Likewise the image l ines i n  the initial configuration, of those par t ic les  

lying along the 

Cp', (p2, and Cp3. Usually neither the aU nor the cp" line& w i l l .  be orthog- 

onal. Thus 

O', 02, and 03, respectively. 
- ._- 

zl, z2, and z3 axes in the defonned body, are t o  be labeled 

I _  

- (15 1 a a $  i i a  z = 2 (z y t ) ,  x = x ( 2  ) 

and 

za = z"(xA)., x! = #(z") 

while 

-- --. 

whenever specific values 1, 2, or 3 are assigned t o  a. In other words, the 

t r i o  of coordiaate numbem associated with a particular par t ic le  of the body 

i s  the same for  both the 9" and z' frames. This par t ic le  w i l l  generally be 

t h i s  second t r i o  w i l l  agree with the par t ic le 's  OU coordinate numbers. 
*' 

It appears tha t  th i s  choice of coordinates is  superior Co that i n  which 

the deformation is described in te rn  of the nonorthogonal system comprising 

the deformed lines of the original. frame, as in section 2.1of reference [4]. 
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This is because the stress tensor may herein be direct ly  related t o  the displace- 

ments. 

of the deformed state when the coordinates t o  be used are so vague that the 

metric i t s e l f  is unknown. 

Moreover, it is usually quite d i f f icu l t  t o  formulate problems i n  tenas 

Forgetting for  the moment that we are concerned with deformation, we 

observe that the four coordinate systems Za, X!, z a , and x i describe a common 

space, whose squared element of a r c  is given by 

where repeated indices signif'y summation over thelrange 1, 2, 3. Hence, 

where 

i n  terms of the notation 

t o  which we add,for future use, tha t  

Remembering now that we are i n  f ac t  concerned w i t h  the measurement of 

deformation, we next cohider  an a r c  length made up of marked elements Within 

the undeformd material body, for  which 

! 
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Similarly, the square of incremental arc length i n  the deformed body is given 

bY * 

Hence the Green-St.Venant measure of strain, which is referred t o  the coor- 

dinates of the initial configuration, is 

and the Alamansi-Hamel m e ~ ~ u r e ,  referred t o  the coordinates of the de fomd 

. .  . 

.. 
In  order to phrase the right-hand sides of (23) and (24) i n  terms of 1' 

- 

/" (25) 

displacements, we begin by noting that 

si 53 

/' 

%I?= gij M IT 

// 

where 
-1 -. 

and that 

where 

, 
1 ,  I-' 

,' , 

$8 cij = % i j 

. 
*. . 

. .- 
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i n  which 

and 

-.- .- 
A glance at  Ng.  2 s h w  that the displacement may be found from either 

i n  the Za frame, or from 

u U = p - z , z  U P  

i n  the zu frame. Differentiation of (33) with respect t o  2' reveals that 

(35 1 U 

so tha t  - -. -- .- 
M 

Correspondingly, differentiation of (34) Kith respect t o  z7 shows that I 

(36 )  

(37 1 

I - $ 6 '  
a 

' Y  7 
u = 

' Y  

and hence 

t 
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t 
t 
t 

i 
I 

i 

i 
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Substftution for  If from (36) into (29) and for  hi m from (39) into (30 )  

results i n  

and 

Although (40) and (41) are correct as they are  written, they express Em 

(or E ) i n  terms of quantities measured i n  the XA and Z" (or x i and za) 13 -4 

frames. This use of two reference frames ma;y be reduced t o  one br noting that 

and 

A t  a particular t h e  t = tl the displacements are effectively t h e  independent 

so that 

-\ 

where 

' .  and where 

that these four terms i n  (44) and (45) depend have been introduced t o  emphasize 

upon the transformatkons as shown in (42) and (43), while @,B and ui terms r 3  
depend upon the spatial functions obtained from 

i 
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tP = rP(XB,t> 
i i d  u = u ( x  ,t) 

(46) 

(47) 

' *  

evaluated a t  tim t = tl. 

Substitution f o r  the displacement derivatives from (44) and (45) into 

(40) and (41) results i n  the desired expressions 

and 

Notice once again that if Ur or  3 were tensors only then would it be 
- 

correct t o  write 

(50) - z7 9 UAIB - A ZB U799 
and 

--- - -_ 

(51) 

but since neither UA nor u i  

stand. 

is a tensor, (44) and (45) must be used as tv 
Obviously (44) and (45) agree w i t h  (1) and (2) fo r  (i) 

ments whenever X A and xi represent Cartesian coordinates, 

exclusively radial dispiacemrrts ir; t c m  GQ elther circular c$t&.rical or  

spherical coordinates. 

4 Strain-Displacewnt' Relations i n  - 
,' 7 

Consider the geometry i l lus t ra ted  i n  Fi,g&;wherein the Cartesian coordinaths 
, 
, 

za are related t o  the circular cylindrical coordinates xi as 
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I 21 = x1 cos x2 
22 = x1 sin 9 
23 = x3 

l and where the noninfinitesimal displacement 

related to the displacement ui in the c i r c w  cylindrical system according 

u., ilr the Cartesian system is 

to equations (8). &om (8) and (52) we find that nonzero values of 2: 

are 1. 
I --.--- 

2: = cos x2 ‘zf = sin I? b 

2: = -xl sin 9 zz = x1 cos x2 

2; = 1, 

= cos(x2 + u2) 5 11 

that the nonzero values of Eui are 

E, = -(xl + u1)sin(x2 + u2) 

= sin(x2 +u2) E 21 

and that the nonzero sues of 5 are 
a, i - 

UIJl  = cos(x2 + u2) - cos 3 

..# 
u I; 3 = I  -xl[sin (9 + u2) - sin I?] - u1 sin($ + u2) 
... 
U = sin(x2 + u2) - sin x2 
2 J 1  - 
U = Xl[COS(x2 + u2) - cos I?] + u1 cos(x2 + 9). 

2 9 2  

Substitution of these values into (49) and subsequent algebraic simplifica- 

t ion results in the following strain-displacemmt relations, expressed in circular 

cylindrical coordinates : 
(I*. 

i 
I 

i 
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€11 = (2 cos u2 - 1) + 2 (cos u2 - 1) 

- $(u )2 + (u',,)' (xl + u1)2 + (u3, )21 

€12 = (ul,l - u2,,) x 1  sin u2 - UZY2 u1 sin u2 + uly2 cos u2 

x 1  (xl + u1)cos u2 - 'i [ u l  sin u2 + 1 + (Ul,, + 1) 

U 
L1. + UZJ1 (u2,, + 1) (xl + Ul) + u3,1 u 3 ,2J 

€23 = -u2 '3 (x1 + u1) sin u2 + h [ul,, (2 cos u2 - 1) 

+ u=,l (1 - U3y3) - 
€22 = (x' + ul) [ (2  cos u2 - 1) x1 - u q  u2,2 + 2 

1 

2 + U1 X1 (2 COS U2 - 1) 

)2 + (U2,,l2 (xl + ul) 2 + (u3,,)"1 
€33 = u3,= - $ 

In  terms of the more common r, 6 ,  z form of the circular  cylindricsl 
- _  

coordinates, the pGsica l  components of the preceding six equations read 

\ 

P '\ 
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' I  

E re = (u,r - -? 

f' 
-: .. 

. .  

_- 
(57 I 

.. . 

_ _  -- 

where u, Y asd w ements along the r, 8 ,  e coordhste 

lines, 
\' - _  

that (53) through (58) reduce t o  the 

classical infinitesimal s.train-displacement relations whenever u, vj and w 

are allowed to becpe io small that second and higher order terms may be 

neglected. 

3 

Strsfidiszlecement relations in the original coordhate' s y s M  assme 

the form 

i 
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= (xl + ul)2 + x1 u1 + 5 I (u1,21 2 

-4 

(63) ? E- = $ [U3,1 + UlP3 + U l J 3  + U2,s (X1 + Ul) + U3,1 *,,I 

Ep3 = 1 [us,, + u2,3 (Xl + + ul,g ul,2 + (xl.+ u1y+ tJ3,3 u3,21 
(64) 

Equations (59) through (64) also reduce t o  the classical  infinitesimal relations 

whenever second and higher order displacement terms may be neglected. 

4. Conclusions. Usually equations derived from (48) and (49) d i f fe r  from 

the s t r a i n  displacements derived from (1) and (2). Acceptance of (1) and (2) 

I i n  the past  may, perhaps, be attributed t o  the i r  application t o  problems involv- 

i n g  r aa i a l  dispXcements eXclusively, i n  which case (1) and (2) agree with (48) 

and (49), respectivelg- l 

L ~ c X E E i t g  ts (E] t z E K q g i  ( 3 1  f m  a t k r  co- - -. L~zi5cZms I *  

F L  nrag be obtained directly frnn equations (48) snd (491, which are general *or 

equations. 
~ 
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